Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175934

RESUMO

Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be found in the lining of canned foods, certain plastic containers, thermal printing papers, composite dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways and upregulating the expression and release of certain cytokines, such as IL6, IL1ß, and TNFα. These, in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state, which allows the perpetuation of the typical physiological complications of obesity.


Assuntos
Disruptores Endócrinos , Humanos , Disruptores Endócrinos/toxicidade , Obesidade , Adipogenia , Adipócitos , Compostos Benzidrílicos/toxicidade , Tecido Adiposo
2.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678861

RESUMO

The biopharmaceutical classification system groups low-solubility drugs into two groups: II and IV, with high and low permeability, respectively. Most of the new drugs developed for common pathologies present solubility issues. This is the case of lurasidone hydrochloride-a drug used for the treatment of schizophrenia and bipolar depression. Likewise, the stability problems of some drugs limit the possibility of preparing them in liquid pharmaceutical forms where hydrolysis and oxidation reactions can be favored. Lurasidone hydrochloride presents the isoindole-1,3-dione ring, which is highly susceptible to alkaline hydrolysis, and the benzisothiazole ring, which is susceptible to a lesser extent to oxidation. Herein, we propose to study the increase in the solubility and stability of lurasidone hydrochloride by the formation of higher-order inclusion complexes with hydroxypropyl-ß-cyclodextrin. Several stoichiometric relationships were studied at between 0.5 and 3 hydroxypropyl-ß-cyclodextrin molecules per drug molecule. The obtained products were characterized, and their solubility and stability were assessed. According to the obtained results, the formation of inclusion complexes dramatically increased the solubility of the drug, and this increased with the increase in the inclusion ratio. This was associated with the loss of crystalline state of the drug, which was in an amorphous state according to infrared spectroscopy, calorimetry, and X-ray analysis. This was also correlated with the stabilization of lurasidone by the cyclodextrin inhibiting its recrystallization. Phase solubility,1H-NMR, and docking computational characterization suggested that the main stoichiometric ratio was 1:1; however, we cannot rule out a 1:2 ratio, where a second cyclodextrin molecule could bind through the isoindole-1,3-dione ring, improving its stability as well. Finally, we can conclude that the formation of higher-order inclusion complexes of lurasidone with hydroxypropyl-ß-cyclodextrin is a successful strategy to increase the solubility and stability of the drug.

3.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830025

RESUMO

Due to the inability to curb the excessive increase in the prevalence of obesity and overweight, it is necessary to comprehend in more detail the factors involved in the pathophysiology and to appreciate more clearly the biochemical and molecular mechanisms of obesity. Thus, understanding the biological regulation of adipose tissue is of fundamental relevance. Connexin, a protein that forms intercellular membrane channels of gap junctions and unopposed hemichannels, plays a key role in adipogenesis and in the maintenance of adipose tissue homeostasis. The expression and function of Connexin 43 (Cx43) during the different stages of the adipogenesis are differentially regulated. Moreover, it has been shown that cell-cell communication decreases dramatically upon differentiation into adipocytes. Furthermore, inhibition of Cx43 degradation or constitutive overexpression of Cx43 blocks adipocyte differentiation. In the first events of adipogenesis, the connexin is highly phosphorylated, which is likely associated with enhanced Gap Junction (GJ) communication. In an intermediate state of adipocyte differentiation, Cx43 phosphorylation decreases, as it is displaced from the membrane and degraded through the proteasome; thus, Cx43 total protein is reduced. Cx is involved in cardiac disease as well as in obesity-related cardiovascular diseases. Different studies suggest that obesity together with a high-fat diet are related to the production of remodeling factors associated with expression and distribution of Cx43 in the atrium.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Comunicação Celular , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Obesidade/metabolismo , Animais , Humanos
4.
Biomed Res Int ; 2020: 7453786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149131

RESUMO

Endocrine disruptors (EDs) are defined as environmental pollutants capable of interfering with the functioning of the hormonal system. They are environmentally distributed as synthetic fertilizers, electronic waste, and several food additives that are part of the food chain. They can be considered as obesogenic compounds since they have the capacity to influence cellular events related to adipose tissue, altering lipid metabolism and adipogenesis processes. This review will present the latest scientific evidence of different EDs such as persistent organic pollutants (POPs), heavy metals, "nonpersistent" phenolic compounds, triclosan, polybrominated diphenyl ethers (PBDEs), and smoke-derived compounds (benzo -alpha-pyrene) and their influence on the differentiation processes towards adipocytes in both in vitro and in vivo models.


Assuntos
Adipogenia/fisiologia , Disruptores Endócrinos/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Benzoatos/metabolismo , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Humanos , Metabolismo dos Lipídeos , Fenóis/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Fatores de Transcrição , Triclosan/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...